« »

" "

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Основы автоматизированного проектирования

: 17.05.01 , :

: 4, : 8

(): 17.05.01

1161 12.09.2016 ., : 28.09.2016 .

: 1,

(): 17.05.01

, 7 20.06.2017

, 5 21.06.2017

: 2 , . . .

: . . .

:

. .

Компетенция ФГОС: ПК.1 владение элементами начертательной геометрии, инженерной и компьют применять современные программные средства выполнения и редактиро		
и подготовки конструкторско-технологической документации; в части сл		
обучения:		
2.		
4.		
5. 6		
8.		
1.	-	
4.		
2.		
		2.1
, , ,)		
.1. 2		
1. Проблемы и методы решения проектных задач	;	
2. Методы решения проектных задач средствами связки САПР	;	;
.1. 4	1	
3.Иметь представление о возможностях современных САПР	;	
4. Методы и возможности 3D моделирования	;	;
.1. 6	1	
5.САПР, возможности авторского и коллективного проектирования	;	
.1. 5	1	
6.Основы концепции поддержки жизненного цикла изделий	;	
.1. 6		
7. Прикладные САПР и методы описания конструкций	;	;
.1. 8		
8. Методы анализа конструкций в современных программных средствах проектирования	;	
.1. 1		
9.Пользуется современными программными средствами подготовки конструкторско-технологической документации	;	;
.1. 4		

10.Пользуется технологиями проектирования в среде современных пакетов	;	;
проектирования		·

3.

3.1

	, .			
: 8				
:				
1.				
· , , , ,	0	2	5	
2.			_	,
Altium Designer	0	2	5	Altium Designer
Altium Designer 3.				- U
	0		10	
	0	2	10	
4.				
,	0	2	6	
5.				
·			_	
	0	2	7	
6. ,	0	2	10	
	0	2	10	
7.	0	2	10	
8.	2	2	10, 9	
•	CALC	DI M		
9	CALS	PLM	, PDM Workfl	ow.
	0	2	2	
CAD/CAM/CAE				
10.				
	0	2	2	
()				

11.	0	2	1		
12. Altium Designer, T-FLEX,	1	2	3		
:					
CAD/CAM/CAE . () (CAD-).	0	2	4		
14. 3D T-FLEX, Altium Designer	0	2	7		
15. CAD/CAM/CAE	0	2	8		
:					
16. Altium Designer Altium.	0	2	3		
17.	1	2	9	Altium Designer,	
18. 3D T-FLEX, Altium Designer	2	2	10	3D Internet	
				3.2	
	, .				
: 8					
:					
1. Altium Designer, Altium Designer	4	4	9	Altium Designer,	
2. T-FLEX, T-FLEX.	4	4	9	T-FLEX,	
3. , Altium Vault	4	4	7, 9	, , , Altium Vault	
4. 3D T-FLEX, Altium Designer.	4	4	4, 7, 9	T-FLEX, Altium Designer, 3D	

5.	m Designer	4	4	10, 2		
6.						
Desig	Altium	4	4	10, 2, 4		
7.	nei	,	,	10.0		
	·	4	4	10, 2	53429-2009,	23752-79
8.		4	4	10		
9.		4	4	10, 2, 4, 9	,	, PDF
	4.					
	: 8					
1				10, 2, 8, 9	6	0
	[]/ : http://elibrary.nstu.	3 :]: - ru/source?bil	; b_id=vtl	- [s000199413		, [2014]
2				1	16	0
	, [, [2014].	-	[: htt	:]/ . :p://elibrary.nstu.r]: - ; ru/source?bib_id=	;
3				3, 7	5	0
	, [2014]] / . : http://e]: library.n	.: - ; stu.ru/source?bib	 [_id=vtls0001994	13
4				1, 2, 4, 5, 6, 7,	8 5	0
[2 :]: -]/ : http://elibrary.nstu.ru/source	; ce?bib_id=vt	 ls000199	, [9413	, [2014].	

(.5.1). 5.1 e-mail:litvinenko@corp.nstu.ru e-mail:litvinenko@corp.nstu.ru 6. 15-(), ECTS. . 6.1. 6.1 : 8 Лекция: 9 Лабораторная: 18 36 РГ3: 7 15 Экзамен: 40 21 6.2 6.2 .1 2. + + 4. + 5. + + 6. + 8. + + 1. + +

4.

1

- **1.** Норенков И. П. Основы автоматизированного проектирования : учебник для вузов по направлению "Информатика и вычислительная техника" / И. П. Норенков. М., 2006. 446, [1] с. : ил.
- **2.** Виноградов А. В. Автоматизированное проектирование и информационное обеспечение жизненного цикла изделий [Электронный ресурс]: конспект лекций / А. В. Виноградов; Новосиб. гос. техн. ун-т. Новосибирск, [2011]. Режим доступа: http://ciu.nstu.ru/fulltext/unofficial/2012/lib 1070 1325817273.docx. Загл. с экрана.
- **1.** Большаков В. П. 3D-моделирование в AutoCAD, KOMПAC-3D, SolidWorks, Inventor, T-Flex: учебный курс / В. Большаков, А. Бочков, А. Сергеев. М. [и др.], 2011. 328, [3] с.: ил., черт. + 1 DVD-ROM.

1. ЭБС HГТУ: http://elibrary.nstu.ru/

2. ЭБС «Издательство Лань» : https://e.lanbook.com/

3. GEC IPRbooks: http://www.iprbookshop.ru/

4. 9EC "Znanium.com": http://znanium.com/

5. :

8.

8.1

1. Литвиненко С. А. Проектирование средств поражения и боеприпасов [Электронный ресурс]: учебно-методическое пособие [методические указания к выполнению курсовой работы] / С. А. Литвиненко; Новосиб. гос. техн. ун-т. - Новосибирск, [2014]. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000199413. - Загл. с экрана.

8.2

1 Windows

2 Office

9.

1	31	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра автономных информационных и управляющих систем

"УТВЕРЖДА	Ю"
ДЕКАН Ф.	ЛА
д.т.н., профессор С.Д. Сале	нко
	_ Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Основы автоматизированного проектирования

Образовательная программа: 17.05.01 Боеприпасы и взрыватели, специализация: Автономные системы управления действием средств поражения

1. Обобщенная структура фонда оценочных средств учебной дисциплины

Обобщенная структура фонда оценочных средств по дисциплине автоматизированного проектирования приведена в Таблице 1.

Таблица 1.

			Этапы онен	ки компетенций
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
ПК.1/ПК владение элементами начертательной геометрии, инженерной и компьютерной графики, способность применять современные программные средства выполнения и редактирования изображений, чертежей и подготовки конструкторскотехнологической документации	32. знать методы геометрического моделирования	Информационно-процедурная схема автоматизированного проектирования в среде САD/САМ/САЕ систем Проблемы проектирования сложных технических систем и комплексов Современное состояние и тенденции развития систем автоматизированного проектирования (САПР) изделий и технологий.	РГ3, раздел 1, 4.	Экзамен, вопросы 1, 2, 3
ПК.1/ПК	34. знать принципы построения и структуру систем автоматизированног о проектирования	Краткая характеристика и классификация САD/САМ/САЕ систем. Конструирование (проектирование изделий) в САПР (САD-системах). Построение презентации проекта Разработка топологии печатной платы в среде Altium Designer Разработка 3D моделей электронных и конструктивных элементов в среде Т-FLEX, портирование моделей в Altium Designer. Среда проектирования Altium Designer, T-FLEX, настройка интерфейса. Среда проектирования Altium Designer настройка правил и шаблонов технологической документации в Altium.	РГ3, разделы 1, 2.	Экзамен, вопросы 4, 5, 6.
ПК.1/ПК	35. знать основы концепции поддержки жизненного цикла изделий	Разработка технического задания. Содержание ТЗ. Процедуры определения потребности проектирования, выбора целей проектирования, определения основных признаков объекта проектирования.	РГЗ, разделы 4	Экзамен, вопросы 7, 8, 9.
ПК.1/ПК	зб. знать методы структурно- параметрического описания конструкций	Параметры технических систем, элементов, окружающей среды. Внутренние, внешние и выходные параметры.		Экзамен, вопросы 10,11,12.

Основы

ПК.1/ПК	38. знать методы анализа конструкций в современных программных средствах проектирования	Примеры параметров Построение 3D моделей в Т- FLEX, привязка элементов к Altium Designer Структура библиотек и использование элементов в Altium Designer Структурный синтез технических объектов. Классификация задач структурного синтеза. Основные подходы к решению задач структурного синтеза Технологическое проектирование в CAD/CAM/CAE системах и порядок создания программ для станков с ЧПУ.	РГЗ, раздел 2.	Экзамен, вопросы 13, 14, 15.
ПК.1/ПК	у1. владеет современными программными средствами подготовки конструкторскотехнологической документации	Знакомство с платформой Altium Designer, настройка среды проектирования Altium Designer Знакомство с платформой Т-FLEX, настройка среды проектирования Т-FLEX. Подготовка технологической документации, автоматизация сбора информации. Построение презентации проекта Построение презентации проекта. Разработка библиотек и моделей компонентов, Altium Vault Разработка 3D моделей электронных и конструктивных элементов в среде Т-FLEX, портирование моделей в Altium Designer.	Отчет по лабораторной работе 1, 4, РГЗ, разделы 1, 4.	Экзамен, вопросы 16, 17.
ПК.1/ПК	у4. владеть технологиями проектирования в среде современных пакетов проектирования	Верификация проектов, проверка оптимальности реализации проекта. Оформление конструкторской документации Подготовка проекта к производству. Построение презентации проекта Построение презентации проекта. Построение 3D моделей в Т-FLEX, привязка элементов к Altium Designer Разработка схемы электрической принципиальной в Altium Designer Разработка топологии печатной платы в среде Altium Designer Создание окончательной версии проекта, оформление конструкторской документации. Структурный синтез технических объектов. Классификация задач структурного синтеза. Основные подходы к решению задач структурного синтеза	Отчет по лабораторной работе 2, 3, разделы 2, 3.	Экзамен, вопросы 18, 19, 20.

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по д**исциплине** проводится в 8 семестре - в форме экзамена, который направлен на оценку сформированности компетенций ПК.1/ПК.

Кроме того, сформированность компетенции проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 8 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (РГ3). Требования к выполнению РГ3, состав и правила оценки сформулированы в паспорте РГ3.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенции ПК.1/ПК, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра автономных информационных и управляющих систем

Паспорт экзамена

по дисциплине «Основы автоматизированного проектирования», 8 семестр

1. Методика оценки

Экзамен проводится в устной форме, по билетам. Билет формируется по следующему правилу: первый вопрос выбирается из диапазона вопросов 1 - 10, второй вопрос из диапазона вопросов 1 - 20 (список вопросов приведен ниже). В ходе экзамена преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма экзаменационного билета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет ФЛА

Билет №
к экзамену по дисциплине «Основы автоматизированного проектирования автономных
информационных и управляющих систем»

- 1. Каков порядок действий при создании печатной платы с помощью AltiunDesigner?
- 2. Что такое NetLabel и как работает?

Утверждаю: зав. кафедрой		_ должность, ФИО
1 1	(подпись)	
		(дата)

2. Критерии оценки

- Ответ на экзаменационный билет считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, не способен показать владение информацией по предмету, в пояснениях допускает принципиальные ошибки, оценка составляет <u>25</u> баллов.
- Ответ на экзаменационный билет засчитывается на **пороговом** уровне, если студент при ответе на вопросы дает определения основных понятий, не способен показать уверенное владение информацией по предмету, в пояснениях допускает не принципиальные ошибки, оценка составляет <u>50</u> баллов.
- Ответ на экзаменационный билет засчитывается на **базовом** уровне, если студент при ответе на вопросы дает определения основных понятий, способен показать уверенное владение информацией по предмету, в пояснениях не допускает принципиальных ошибок, оценка оставляет 75 баллов.
- Ответ на экзаменационный билет засчитывается на **продвинутом** уровне, если студент при ответе на вопросы дает определения основных понятий, способен показать уверенное владение информацией по предмету, в пояснениях не допускает принципиальных ошибок, способен привести несколько различных вариантов

правильных ответов, оценка оставляет 100 баллов.

3. Шкала оценки

Оценка знаний и умений студентов проводится в соответствии с «Положением о балльно-рейтинговой системе оценки достижений студентов НГТУ» от 02.07.09 г.

Рейтинг студента по дисциплине определяется как сумма баллов за работу в семестре (текущая аттестация) и баллов, полученных в результате итоговой аттестации (экзамен)

Итоговая аттестация студента проводится в форме экзамена. Максимальное количество баллов, которое студент может получить на экзамене, равно **40**.

Общее количество баллов за виды учебной деятельности студента, предусмотренные программой освоения дисциплины, может составлять не более **60 баллов**.

Для получения допуска к зачету студент обязан выполнить все предусмотренные в рабочей программе дисциплины виды работ в семестре и набрать количество баллов не ниже минимально допустимого - **29 баллов**. Если по результатам работы в семестре студент набрал менее **9 баллов**, ему выставляется итоговая оценка по дисциплине «неудовлетворительно» (**F**). В этом случае студенту предлагается изучить дисциплину повторно на платной основе. Если по результатам работы в семестре студент набрал **10 - 28 баллов**, то решение о допуске к сдаче экзамена принимает декан факультета.

Количество выставляемых баллов зависит от полноты и качества выполнения учебных заданий, своевременности сдачи работ.

В таблице 1 приводятся требования к текущей аттестации по дисциплине, формы контроля, минимальное и максимальное количество баллов по каждому виду деятельности.

Таблица 1.

Формы	Ы Треберония и стрестения		Количество баллов		
контроля	Требования к аттестации	Минимальное		Максимальное	
Посещаемость лекционных и практических занятий	Пропуск занятия - 0 баллов Посещение занятия – 0,5 балла	4		9	
РГЗ	Выполнение работы - 2 балл Защита работы: посредственная - 5 баллов хорошая - 9 баллов отличная - 13 баллов	7		15	
Работа на	Выполнение работы – 1 балл	за работу	за все работы	за работу	за все работы
лабораторных занятиях. В семестре 9 работ	Защита работы: посредственная - 1 балла хорошая - 2 балла отличная - 3 балла	2	18	4	36
Итоговое количес	тво баллов за семестр		29	6	50

Итоговая аттестация студента проводится в форме экзамена. Оценка знаний и умений студентов проводится с помощью вопросов по основным проблемам дисциплины. Для оценки деятельности студента используются экзаменационные задания в виде 1- го теоретического и 1-го практического вопроса. Теоретические вопросы формулируются в строгом соответствии с темами лекционных занятий. Максимальное количество баллов, которое студент может получить на экзамене, равно 40

Устанавливаются следующие правила итоговой аттестации студента (таблица 2).

Характер ответа	Количество баллов за ответ
Правильный ответ на вопрос	36 - 40
Неполный ответ на вопрос	26 - 35
Неточный ответ на вопрос	21 - 25

Рейтинг студента для выставления итоговой оценки по дисциплине в «буквенной» форме в соответствии с 15-уровневой шкалой оценок ECTS, а также в традиционной форме приведен в таблице 3.

Таблица 3.

Диапазон баллов рейтинга	оценка ECTS	традиционная форма
98 - 100	A+	ОТЛИЧНО
94 - 97	A	ОТЛИЧНО
90 - 93	A-	ОТЛИЧНО
87 - 89	B+	ОТЛИЧНО
84 - 86	В	ХОРОШО
80 - 83	B-	ХОРОШО
77 - 79	C+	ХОРОШО
74 - 76	С	ХОРОШО
70 - 73	C-	УДОВЛЕТВОРИТЕЛЬНО
67 - 69	D+	УДОВЛЕТВОРИТЕЛЬНО
64 - 66	D	УДОВЛЕТВОРИТЕЛЬНО
60 - 63	D-	УДОВЛЕТВОРИТЕЛЬНО
50-59	Е	УДОВЛЕТВОРИТЕЛЬНО
25-49	FX	НЕУДОВЛЕТВОРИТЕЛЬНО
0-24	F	НЕУДОВЛЕТВОРИТЕЛЬНО

В общей оценке по дисциплине экзаменационные баллы учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Вопросы к экзамену по дисциплине «Основы автоматизированного проектирования автономных информационных и управляющих систем»

- 1. Каков порядок действий при создании печатной платы с помощью AD?
- 2. В чем отличия PCB Project и Free Documents, возможны ли взаимные переходы между ними?
- 3. Что необходимо учитывать при создании схемы электрической принципиальной (Sch file) с помощью AD?
- 4. Что необходимо учитывать при создании печатной платы (Pcb file) с помощью AD?
- 5. Какова структура библиотек в АD?
- 6. Что такое Part в схемной библиотеке?
- 7. Возможно, ли к одному символу привязать несколько футпринтов, если да то каким образом и для каких целей.
- 8. Как сделать красивую 3D-модель корпуса элемента и возможно ли это в AD?
- 9. Какие варианты хранения и доступа к библиотекам элементов существуют в AD?
- 10. Позиционирование символа элемента, каким образом его можно развернуть, отразить? Приведите максимальное кол-во способов работы с элементом.
- 11. Как работает в AD копирование клонированием, какие еще существуют способы присвоения позиционных обозначений элементов на схеме (нумерация элементов).
- 12. Что такое NetLabel и как работает?
- 13. Что такое правила проектирования, как их редактировать и на что они влияют.
- 14. «Инспектор» либо «мастер» (F11) в AD что это такое и каковы его возможности.
- 15. Каким образом задается контур печатной платы, какие формы он может принимать?
- 16. Каким образом задается сплошная заливка проводящего слоя, форма и вид заливки, функциональное назначение.

- 17. Резервное копирование в AD, возможности и как реализовано? 18. Редактирование дорожек в AD, возможности и способы. 19. Редактирование элементов в AD, возможности и способы. 20. Что такое Altium Vault, его возможности.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра автономных информационных и управляющих систем

Паспорт расчетно-графического задания

по дисциплине «Основы автоматизированного проектирования», 8 семестр

1. Методика оценки

В рамках расчетно-графического задания по дисциплине студенты должны разработать топологию печатной платы заданного устройства, разместить на плате реалистичные модели радиодеталей и необходимых механических частей.

При выполнении расчетно-графического задания студенты должны разработать библиотеку радиоэлектронного либо механического элемента схемы.

Обязательные структурные части РГЗ.

- 1. Задание По теме задания привести схему электрическую принципиальную, привести детальную информацию необходимую для разработки библиотечного элемента.
- 2. Разработка библиотечного элемента Необходимо наличие УГО, посадочного места, 3D модели радиоэлемента согласно задания.
- 3. Разработка схемы электрической принципиальной в среде Altium Designer.
- 4. Разработка топологии печатной платы.
- 5. Оформление внешнего вида устройства.

2. Критерии оценки

- Работа считается не выполненной, если выполнены не все части РГЗ, отсутствуют 2е и более либо выполнена всего одна обязательная структурная часть, оценка составляет 25 баллов.
- Работа считается выполненной **на пороговом** уровне, если выполнены не все части РГЗ, отсутствуют не более одной обязательной структурной части и остальные выполнены формально (присутствуют недочеты, при защите студент путается в терминах и определениях), оценка составляет 50 баллов.
- Работа считается выполненной **на базовом** уровне, если выполнены все части РГЗ, не более одной обязательной части выполнено формально (присутствуют недочеты, при защите студент путается в терминах и определениях), оценка составляет 75 баллов.
- Работа считается выполненной **на продвинутом** уровне, если выполнены все части РГЗ, все обязательной части выполнено без замечаний (недочеты в работе отсутствуют, при защите студент уверен в терминах и определениях), оценка составляет 100 баллов.

3. Шкала оценки

В общей оценке по дисциплине баллы за РГЗ учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

При сдаче аттестационного экзамена в случае спорной оценки к экзаменационному баллу может быть добавлено 15% от оценки за РГЗ.

4. Примерный перечень тем РГЗ(Р)

Разработать УГО, посадочное место, 3D представление всех элементов схемы, построить схему электрическую принципиальную и топологию печатной платы. Результат разработки представить в виде изображения (скриншота) элемента в режиме редактирования, схемы электрической принципиальной, изображения печатной платы послойно и 3D модель печатной платы в изометрии. Работа выполняется в пакете Altium Designer, механическая часть и 3D модели в T-FLEX CAD учебной версии.

- 1. Разработка однокаскадного усилителя на полевом транзисторе.
- 2. Разработка однокаскадного усилителя на биполярном транзисторе.
- 3. Разработка усилителя постоянного тока на базе операционного усилителя.
- 4. Разработка резонансного усилителя на полевом транзисторе.
- 5. Разработка резонансного усилителя на биполярном транзисторе.
- 6. Разработка усилителя постоянного тока на базе биполярных транзисторов.
- 7. Разработка эмиттерного повторителя напряжения.
- 8. Разработка истокового повторителя напряжения.
- 9. Разработка фильтра низких частот на базе операционного усилителя.
- 10. Разработка фильтра высоких частот на базе операционного усилителя.
- 11. Разработка компаратора на базе операционного усилителя.
- 12. Разработка компаратора на биполярном транзисторе.
- 13. Разработка мультивибратора на биполярных транзисторах.
- 14. Разработка мультивибратора на логических элементах.
- 15. Разработка градиентометра на полевых транзисторах.
- 16. Разработка зарядового датчика на полевом транзисторе.
- 17. Разработка емкостного датчика на полевых транзисторах.
- 18. Разработка емкостного датчика на биполярных транзисторах.
- 19. Разработка индуктивного датчика на полевых транзисторах.
- 20. Разработка автодинного СВЧ датчика на биполярном транзисторе.
- 21. Разработка стабилизатора напряжения с выпрямителем.
- 22. Разработка интегрального стабилизатора напряжения с выпрямителем.
- 23. Разработка высокочастотного автогенератора.
- 24. Разработка высокочастотного автогенератора с кварцевой стабилизацией частоты.
- 25. Разработка высокочастотного генератора с частотной модуляцией.
- 26. Разработка высокочастотного генератора с амплитудной модуляцией.
- 27. Разработка импульсного усилителя на биполярных транзисторах.
- 28. Разработка широкополосного усилителя на биполярных транзисторах.
- 29. Разработка низкочастотного генератора с изменяемым тоном на логических элементах.
- 30. Разработка генератора линейно изменяющегося напряжения.