ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет мехатроники и автоматизации Заочный факультет

УТВЕРЖДАЮ	УТВЕРЖДАЮ
Декан ФМА	Декан ЗФ
профессор, д.т.н. Щуров Николай Иванович	профессор, д.т.н. Темлякова Зоя Савельевна
·· Γ.	
РАБОЧАЯ ПРОГРАММА	учебной дисциплины

Теоретическая механика

ООП: специальность 140606.65 Электрический транспорт Шифр по учебному плану: ЕН.Ф.7

Факультет: заочный заочная форма обучения Курс: 2, семестр: 3 4

Лекции: 18

Практические работы: - Лабораторные работы: - Курсовой проект: - Курсовая работа: - РГЗ: - Самостоятельная работа: 162

Экзамен: - Зачет: 4

Новосибирск

2011

20211/15037

Всего: 180

Рабочая программа составлена на основании _Государственного образовательного стандарта высшего профессионального образования по направлению (специальности): 654500 Электротехника, электромеханика и электротехнологии.(№ 207 тех/дс от 27.03.2000)

ЕН.Ф.7, дисциплины федерального компонента

Рабочая программа обсуждена на заседании кафедры Теоретической механики и сопротивления материалов протокол № 1 от 13.04.2011

Программу разработал

профессор, д.т.н.

Красюк Александр Михайлович

Заведующий кафедрой

профессор, д.т.н.

Атапин Владимир Григорьевич

Ответственный за основную образовательную программу

профессор, д.т.н.

Щуров Николай Иванович

1. Внешние требования

Таблица 1.1

ЕН.Ф.07	Теоретическая механика статика; кинематика точки; кинематика	180
	твердого тела; сложное движение точки и твердого тела; динамика	
	материальной точки; общие теоремы динамики; элементы	
	аналитической механики; основные понятия аналитической	
	механики электромеханических систем.	

2. Особенности (принципы) построения дисциплины

Таблица 2.1

Особенности (принципы) построения дисциплины

	спости (принципы) постросния дисциплины
Особенность	Содержание
(принцип)	
Основания для введения	Требования Государственного образовательного стандарта
дисциплины в учебный	высшего образования (ГОС) (регистрационный номер 207
план по направлению или	тех/дс от 27.03.2000) по направлению подготовки
специальности	дипломированного специалиста 140606 (180700)
	"Электрический транспорт".
Адресат курса	Специальность 140606 – «Электрический транспорт»
Основная цель (цели)	Обеспечение базы инженерной подготовки, теоретическая и
дисциплины	практическая подготовка в области теоретической механики,
	развитие инженерного мышления, приобретение знаний,
	необходимых для изучения последующих дисциплин
Ядро дисциплины	Задачи кинематики точки и твердого тела, равновесия тел под
	действием сил, динамики материальной точки и механических
	систем.
Связи с другими учебными	Сопротивление материалов. Теория машин и механизмов.
дисциплинами основной	Детали машин и основы конструирования
образовательной	
программы	
Требования к	Для успешного изучения дисциплины студенту необходимы
первоначальному уровню	знания, получаемые из курсов математического анализа,
подготовки обучающихся	векторной алгебры, дифференциальных уравнений
	Опыт работы на персональном компьютере, знание
	определенной прикладной программы (MatLab, MatCad,
	Excel).
Особенности организации	Мультимедийный курс лекций
учебного процесса по	
дисциплине	

20211/15037

3. Цели учебной дисциплины

Таблица 3.1

После изучения дисциплины студент будет

После изуче	ния дисциплины студент будет
иметь	
представление	
1	О теоретической механике как науке о природе
2	О моделях явлений, рассматриваемых в теоретической механике, о
	границах применимости законов ньютоновской механики
3	О современных проблемах механики
знать	
4	Задачи кинематики точки и твердого тела
5	Задачи статики о равновесии тела и приведения системы сил к простейшему виду
6	Задачи динамики материальной точки, общие теоремы динамики механической системы
уметь	
7	Использовать теоремы кинематики точки и твердого тела при решении конкретных задач
8	Составлять уравнения равновесия тел и решать их, определяя неизвестные реакции. Приводить сложную систему сил к простейшему виду
9	Составлять дифференциальные уравнения движения материальной точки, твердого тела, системы и решать их.
10	Прогнозировать поведение механической системы. Представлять результаты решения отдельных задач, описание расчетно-графического задания в удобной для восприятия форме.
иметь опыт	
(владеть)	
11	Применения методов расчета типовых расчетных схем к расчету реальных элементов конструкций, как в статике, так и в динамике.
12	по выполнению необходимых расчетов, используя современную электронно-вычислительную технику
<u> </u>	Strang 22 mount will for the many

4. Содержание и структура учебной дисциплины

Лекционные занятия Таблица 4.1

(Модуль), дидактическая единица, тема	Часы	Ссылки на цели
Семестр: 2		
Модуль: Введение в теоретическую механику.		
Мировоззренческие аспекты		
(цели 1-4)		
Дидактическая единица: Кинематика точки		
Мировоззренческие аспекты. Кинематика. Предмет	1	1
кинематики. Способы задания движения точки. Векторный		
способ задания движения точки. Естественный способ задания		
движения точки. Координатный способ задания движения		
точки.		

Модуль: Кинематика		
(цели 5,8, 11, 12)		
Дидактическая единица: Кинематика точки		
Скорость точки при координатном задании движения.	1	4, 7
Полное ускорение точки при естественном задании движения.		
Скорости и ускорения точки при сложном движении.		
Ускорение точки по графику изменения скорости.		
Семестр: 3		
Модуль: Кинематика		
(цели 5,8, 11, 12)		
Дидактическая единица: Кинематика твердого тела		
Понятие об абсолютно твердом теле. Поступательное	1	1, 2, 4, 7
движение твердого тела. Вращательное движение твердого	1	1, 2, 4, 7
тела вокруг неподвижной оси. Движение твердого тела с		
неподвижной точкой; произвольное движение твердого тела.	2	1 2 6 0
Плоско-параллельное движение твердого тела. Плоское	2	1, 2, 6, 8
движение твердого тела и движение плоской фигуры в ее		
плоскости. Уравнения движения плоской фигуры. Разложение		
движения плоской фигуры на поступательное вместе с		
полюсом и вращательное вокруг полюса. Определение		
скоростей точек плоской фигуры. Теорема о проекциях		
скоростей. Мгновенный центр скоростей. Определение		
скоростей точек плоской фигуры с помощью мгновенного		
центра скоростей. Определение ускорения любой точки		
плоской фигуры		
Сложное движение точки. Абсолютное и относительное	1	1, 11, 2, 5,
движение точки, переносное движение. Теорема о сложении		8
скоростей. Теорема Кориолиса о сложении ускорений		
Модуль: Статика		
(цели 6, 11, 12)		
Дидактическая единица: Статика		
Аксиомы статики. Момент силы относительно точки и	1	11, 4, 7
относительно оси; главный вектор и главный момент системы		
сил; пара сил; эквивалентные пары; произвольная Связи и		
реакции связей. Система сходящихся сил. Приведение		
произвольной системы сил к данному центру.		
Уравнения равновесия произвольной плоской системы		
Модуль: Динамика (цели 9-12)		
Дидактическая единица: Динамика точки		
Основные понятия динамики. Законы механики Галилея-	1	1, 11, 12,
Ньютона. Дифференциальные уравнения движения. Основные		2, 6, 8
задачи динамики материальной точки. Задача Коши.		
Относительное движение материальной точки.		
Дидактическая единица: Динамика механической системы		
Механическая система. Масса системы. Осевые и	2	1, 11, 2, 6,
центробежные моменты инерции. Дифференциальные		8
уравнения движения механической системы. Теорема о		
движении центра масс системы.		
Количество движения и момент количества движения системы.	1	1, 7
Теоремы об изменении количества и момента количества		7 -
движения системы. Теорема Эйлера. Турбинное уравнение		
Эйлера. Критические скорости роторов.		
Samepa. Teprim reemite enopoem poropos.	1	

		11 10 5
Работа силы. Мощность. Кинетическая энергия. Теорема об	2	11, 12, 5,
изменении кинетической энергии механической системы.		7, 8
Теорема Кёнига.		
Принцип Даламбера. Силы инерции. Принцип Даламбера	1	11, 5, 7, 8
для механической системы. Метод кинетостатики.		
Определение динамических реакций подшипников при		
вращении твердого тела вокруг неподвижной оси.		
Дидактическая единица: Элементы аналитической механики		
Принцип возможных перемещений. Связи и их уравнения.	1	5, 7
Возможные перемещения. Возможная работа. Принцип		
возможных перемещений.		
Общее уравнение динамики (принцип Даламбера-Лагранжа).		
Уравнения Лагранжа II рода. Обобщенные координаты	2	11, 12, 5,
механической системы. Обобщенные силы. Уравнения		7, 9
Лагранжа 11 рода. Дифференциальные уравнения движения		
механической системы в обобщенных координатах. Уравнение		
равновесия в обобщенных координатах. Потенциальное		
силовое поле; примеры потенциальных полей; уравнение		
Лагранжа второго рода для консервативных механических		
систем.		
Дидактическая единица: Основные понятия аналитической		
механики электромеханических систем		
Первая система электромеханических аналогий. Примеры на	1	
применение электромеханических аналогий.		

5. Самостоятельная работа студентов

Семестр- 4, Подготовка к зачету

Систематическое изучение дисциплины в течение семестра, закрепление и углубление полученных знаний и навыков, подготовка к предстоящим занятиям, самостоятельность в поиске и приобретении новых знаний и умений. Для успешной сдачи зачета студенту необходимо изучить конспект лекций и литературные источники из основного списка, приведенного в рабочей программе.

На подготовку к зачету отводится 16 часов.

Семестр- 4, Контрольные работы

Задача К-1 Определение траектории, скорости и ускорения точки по заданным уравнениям ее движения

Задача К-2 Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движении.

Задача К-3 Кинематический анализ многозвенного рычажного механизма.

Задача К-5 Определение абсолютной скорости и абсолютного ускорения точки.

Задача Д-1 Интегрирование дифференциальных уравнений движения материальной точки.

Задача Д-2 Исследование поступательного, вращательного и плоского движения твердого тела

Задача Д-3 Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

Задача Д-4 Применение уравнений Лагранжа II рода к исследованию движения механической системы.

На выполнение контрольной работы отводится 30 часов.

Семестр- 4, Индив. работа

Семестр- 4, Подготовка к занятиям

Подготовка к занятиям включает в себя:

20211/15037

- детальную проработку тем лекционного материала, т.е. дополнение конспекта учебнометодическими материалами из списка рекомендованной литературы;
- ответы на контрольные вопросы;
- решение задач и упражнений по образцу;
- решение вариативных задач и упражнений;

На подготовку к занятиям отводится 116 часов.

6. Правила аттестации студентов по учебной дисциплине

Для зачета каждому студенту выдается билет. Билет включает в себя три задачи: одну по статике, одну по кинематике и задачу по динамике. Время на решение задач - 2 часа.

По результатам решения задач студент может получить следующие оценки:

"Зачтено" - уровень выполнения отвечает большинству основным требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство заданий выполнено, некоторые из выполненных задач содержат ошибки.

"Не зачтено" - теоретическое содержание курса освоено частично, необходимые теоретические навыки работы не сформированы, большинство заданий не выполнено, либо качество их выполнения неудовлетворительно.

7. Список литературы

7.1 Основная литература

В печатном виде

- 1. Сборник заданий для курсовых работ по теоретической механике : [учебное пособие для втузов] / [А. А. Яблонский [и др.] ; под общ. ред. А. А. Яблонского. М., 2008. 382 с. : ил., портр. Рекомендовано МО.
- 2. Тарг С. М. Краткий курс теоретической механики: учебник для высших технических учебных заведений / С. М. Тарг. М., 2008. 415, [1] с.: ил. Рекомендовано МО.

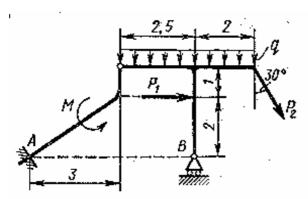
7.2 Дополнительная литература

В печатном виде

1. Бутенин Н. В. Курс теоретической механики. В 2 т.. Т. 1-2 : [учебное пособие для вузов по техническим специальностям] / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. - СПб. [и др.], 2008. - 729 с.: ил.

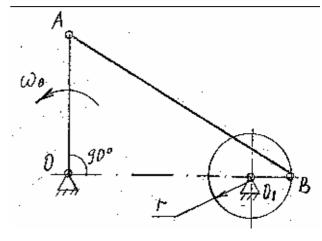
8. Методическое и программное обеспечение

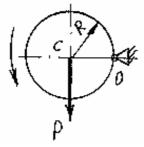
8.1 Метолическое обеспечение


В печатном виде

- 1. Красюк А. М. Теоретическая механика: конспект лекций: учебное пособие / А. М. Красюк; Новосиб. гос. техн. ун-т. Новосибирск, 2009. 135, [3] с.: ил.
- 2. Красюк А. М. Теоретическая механика: сборник заданий: учебное пособие / А. М. Красюк; Новосиб. гос. техн. ун-т. Новосибирск, 2010. 88, [4] с.: ил., табл.

В электронном виде


- 1. Красюк А. М. Теоретическая механика: конспект лекций: учебное пособие / А. М. Красюк; Новосиб. гос. техн. ун-т. Новосибирск, 2009. 135, [3] с.: ил.. Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2009/krasyuk.pdf
- 2. Красюк А. М. Теоретическая механика : сборник заданий : учебное пособие / А. М. Красюк ; Новосиб. гос. техн. ун-т. Новосибирск, 2010. 88, [4] с. : ил., табл.. Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2010/krasyuk.pdf


9. Контролирующие материалы для аттестации студентов по дисциплине Пример билета

1. Составить уравнения равновесия составной балки, необходимые для определения реакций опор и усилий в шарнире.

2. Кривошип OA длины 0,2 м, вращаясь равномерно с угловой скоростью $\omega_0 = 2$ с⁻¹ приводит в движение посредством шатуна AB длины 0,4 м диск радиуса r = 0,1 м, вращающийся вокруг оси, проходящей через точку O_I . В положении, показанном на рисунке определить скорость и ускорение точки B.

повернется на угол $\pi/6$.

3.Однородный диск веса Р и радиуса R

может вращаться вокруг горизонтальной оси O в вертикальной плоскости. В начальный момент радиус OC горизонтален и диск отпущен без начальной скорости. Пренебрегая трением, определить угловую скорость диска в момент, когда диск

20211/15037